
@sander_spies

Dawn of

The earliest prototypes of

React

were written in

Standard ML

2013

var Foo = React.createClass({
 render: function() {
 return <Bar />;
 }
});

Our quest for maintainable applications has

led us to similar concepts found in ML

let peek = cat => {
 if (Math.random() > 0.5) {
 cat.lives--;
 }
};

/* @flow */
type schrodingersCat = {
 lives: number
};

let peek = (cat:schrodingersCat) => {
 if (Math.random() > 0.5) {
 return {...cat, lives: cat.lives - 1};
 }
 return cat;
};

/* @flow */
type animal = "cat" | "dog";

let petAnimal = (animal:animal) => {
 switch (animal) {
 case "cat":
 /*...*/
 break;
 case "dog":
 /*...*/
 break;
 }
};

<Match pattern="/:user" render={(matchProps) => (
 <div>
 <Match pattern="/about" component={About}/>
 <Match pattern="/company" component={Company}/>
 </div>
)}/>

Types, immutability and pattern matching

reduce accidental complexity

+

2016

Meanwhile at…

Concurrent React Prototype in OCaml
@jordwalke

Immutable by default
Pattern matching

Types
Functions

Compiler toolchain
Catch issues at compile time

Also objects, classes, modules, language extensions, and more

Compile to JS/native/kernel

has the defaults we want

JS developer trying to grasp OCaml syntax

What if…

JavaScript OCamlFlow Reason

Adopting features of ML

Becoming familiar to JS
developers

Syntax + tooling

A lot of work

“Let’s drop everything I know”

- nobody ever

Syntax

Build tooling

Sharing

Syntax

Tokenizer Parser OCaml AST

“Pretty”
printer

Backend

OCaml compiler toolchain

Type
System

Rebel

git clone
https://github.com/reasonml/RebelExampleProject

Use package.json to configure everything

Target web or native

https://github.com/reasonml/RebelExampleProject

Editor support

Vim, Emacs, Atom, Sublime and soon VS Code

Building on shoulders of existing OCaml tools

Other tooling

rtop - a repl for Reason

refmt - pretty printer

rejs - JS to Reason

Example

type schrodingersCat = {
 lives: int
};

let peek cat => {
 if (Random.bool ()) {
 {...cat, lives: cat.lives - 1};
 }
 else {

cat;
}

};

type animal = Cat | Dog | Bird;

let petAnimal animal => {
 switch (animal) {
 | Cat => {}
 | Dog => {}
 }
};

Building on familiarity

Reason with React Bindings
Preview

Get started:

https://github.com/reasonml/RebelExampleProject

Ask questions:

https://gitter.im/facebook/reason

@sander_spies

https://github.com/reasonml/RebelExampleProject
https://gitter.im/facebook/reason

