Dawn of EASO N

@sander_spies

The earliest prototypes of

React

were written In

Standard ML

2013

var Foo = React.createClass ({
render: function () {
return <Bar />;

}
b) s

Our gquest for maintainable applications has

led us to similar concepts found in ML

let peek = cat => {
1f (Math.random() > 0.5) {
cat.lives—-;

};

/* @flow */
type schrodingersCat = {
lives: number

}y

let peek = (cat:schrodingersCat) => {
1f (Math.random() > 0.5) {
return {...cat, lives: cat.lives - 1};

J

return cat;

}y

/* @flow */
type animal = "cat" | "dog";

let petAnimal = (animal:animal) => {
switch (animal) {
case "cat":

VA I 4
break;
case "dog":
VA I 4

break;

g

<Match pattern="/:user" render={ (matchProps) => (
<div>
<Match pattern="/about" component={About}/>
<Match pattern="/company" component={Company} />
</div>
) } />

Types, immutability and pattern matching

reduce accidental complexity

= A flow

Meanwhile at...

f

Concurrent React Prototype in OCaml

@jordwalke

Functions

VPES
Immutable by default

Pattern matching
Compiler toolchain
Catch issues at compile time

Compile to JS/native/kernel

Also objects, classes, modules, language extensions, and more

has the defaults we want

JS developer trying to grasp OCaml syntax

What if...

I2AsoN

UILD SYSTEMS RAPIDLY

Adopting features of ML

A lot of work

Becoming familiar to JS
developers

“Let's drop everything | know”

- nobody ever

Syntax

Build tooling

Sharing

Syntax

OCaml AST Vs Backend
System

OCaml compiler toolchain

Rebel

git clone
https://github.com/reasonml/RebelExampleProject

Use package.json to configure everything

Target web or native

https://github.com/reasonml/RebelExampleProject

Editor support

Vim, Emacs, Atom, Sublime and soon VS Code

Building on shoulders of existing OCaml tools

Other tooling

rtop - a repl for Reason

refmt - pretty printer

rejs - JS to Reason

Example

type schrodingersCat = {
lives: 1int

g

let peek cat => {

1f (Random.bool ()) {

{...cat, lives: cat.lives - 1};
}
else {

cat;

}
g

type animal = Cat | Dog | Bird;

let petAnimal animal => {
switch (animal) {
| Cat => {}
| Dog => {}

I ¢

Building on familiarity

Reason with React Bindings
Preview

Get started:

https://github.com/reasonml/BebelExampleProject

Ask questions:

https://qgitter.im/facebook/reason

@sander_spies

https://github.com/reasonml/RebelExampleProject
https://gitter.im/facebook/reason

